

Prescriptive Analytics in Logistics & Supply Chain Management

Richard Pibernik

What does it imply for Logistics and SCM?

SOURCE: Gartner

UNIVERSITÄT WÜRZBURG Every day, we take many routine decisions in logistics & supply chain management ...

Inventory

- Replenishment orders
- Stock allocation
- Safety buffer

Transportation

- Vehicle capacity
- Staffing
- Routing

Handling

- · Inbound/outbound
- Capacity
- Staffing

Maintenance/Repair

- Capacity
- Spare parts inventory
- Contracts

Uncertainty

- Demand
- Supply (labor, material)
- Shipping times
- Replenishment lead times
- Processing times
- Outages
- ...

Inventory

- Replenishment orders
- Stock allocation
- Safety buffer

Transportation

- Vehicle capacity
- Staffing
- Routing

Handling

- Inbound/outbound
- Capacity
- Staffing

Maintenance/Repair

- Capacity
- Spare parts inventory
- Contracts

Julius-Maximilians-

WÜRZBURG

The good news: we have access to more and better data to predict the uncertain variables

Data Mostly proprietary Mostly external Supply chain meta data (product categories, prices, locations, ...) Historical demand data (transactions, volumes, ...) Historical processing data (times, capacities,...) Sensor/IoT data Weather data Calendar/holiday data Clickstreams Web searches Social media awareness ...

Uncertainty

- Demand
- Supply (labor, material)
- Shipping times •
- Replenishment lead times
- Processing times
- Outages
- ...

Inventory

- Replenishment orders
- Stock allocation
- Safety buffer

Transportation

- Vehicle capacity
- Staffing
- Routing

Handling

- Inbound/outbound
- Capacity •
- Staffing

Maintenance/Repair

- Capacity
- Spare parts inventory
- Contracts

6

The bad news: current systems and people use simple decision logics that do not fully leverage available data

	Data Mostly propr	ietary Mostly external		Inventory
	Supply chain meta data (product categories, prices, locations, …)			Repletion ordersStock allocationSafety buffer
	Historical demand data (transactions, volumes,)		Uncertainty Demand	Transportation
	Historical processing data (times, capacities,)		Supply (labor, material)	 Venicle capacity Staffing Bouting
	Sensor/IoT data		 Shipping times Replenishment 	High effort but
	Weather data	Dark Sky	lead times	Inbound/outboun Inbound/outboun
	Calendar/holiday data		Processing times	Capacity Quality (data not leveraged
V	Olioketreams What we see in many	/most companies:	Ullages	simplistic decision logic)
	Basic descriptive analytics	Human interpretation	Simple Human forecasting intervention	Decision Making
• • •	Reports Basic data mining Simple correlations Excel + SAP	 Judgment Subjective inference Driven by expertise 	 Use of simple forecasting tools Limited data usage Excel + SAP Manual forecast adjustment Based on descriptive data and "gut feeling" 	 Basic heuristics/algorithms Deterministic, based on adjusted forecasts Some system support Excel + SAP

<u>Predictive</u> analytics: use machine learning to exploit rich data sources in order to derive better <u>forecasts</u>

Data-driven forecasting

- Broad extraction and engineering of potentially predictive "input features" from enriched data
- Machine Learning models are trained on broad data sets using potentially predictive "input features" to output point forecast and error measures of uncertain variables
- **Examples:** (Deep) Neural Networks, Ensemble Methods (Extreme Gradient Boosting, Random Forests), Support Vector Machines, Generalized Linear Models

Human intervention

- Manual forecast
 adjustment
- Based on datadriven insights and "gut feeling"

Decision Making

- Basic heuristics/algorithms
- Deterministic, based on adjusted forecasts
- Advanced system support

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Deep-dive: ML models approximate an input-to-output relationship by learning a function that maps input features (x) to an output (y)

 $f_2(\mathbf{x}_i)$

0000

4.0

 $f_3(x_i)$

 $\hat{y}_i^{(t)} = \sum^t f_k(x_i)$

 $f_k(x_i)$

INPUT

X

MACHINE LEARNING MODEL

Test Sample Input

Average All Prediction

 $f_{\theta}: x \to y \quad \min_{f_{\theta} \in F} (y - f_{\theta}(x))^2$

Enriched model data

Usage of hundreds of input features possible Typically large "training sample sizes" for the model to learn from Which approximation f_{θ} can best predict the uncertain variable y (output) from known information x (input) such that the <u>error is</u> minimized? $\begin{array}{l} \textbf{OUTPUT}\\ \widehat{y} \approx f_{\theta}(x) \end{array}$

Point forecasts for single or multiple time instances Classification predictions Error estimates

<u>Prescriptive</u> analytics: combine machine learning and optimization techniques to directly derive <u>decisions</u> (prescriptions) from data

Prescriptive Analytics

Data-driven decision making

Human intervention?

driven insights and

 Manual decision adjustment

Based on data-

"gut feeling"

- Broad extraction and engineering of potentially predictive "input features" from enriched data
- Machine Learning and Stochastic Optimization models are integrated and trained on broad data sets using potentially predictive "input features" to directly output decisions (prescriptions) for specified optimization problems/parametrizations under uncertainty
- **Examples:** (Deep) Reinforcement Learning, Stochastic Gradient Tree Boosting, Stochastic Optimization Forests, Weighted Sample Average Approximation, Kernelized Empirical Risk Minimization

Julius-Maximilians-**Deep-dive: ML optimization models directly learn to approximate** UNIVERSITÄT WÜRZBURG optimal decisions (z) from observing input features (x)

INPUT

ML OPTIMIZATION MODEL

 $h_{\theta}: x \to z$

OUTPUT $\widehat{z} \approx h_{\theta}(x)$

Decision

X

 $\min_{\boldsymbol{h}_{\boldsymbol{\theta}}\in\boldsymbol{H}} \boldsymbol{C}(\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}),\boldsymbol{y})$ Reward r Agent policy DNN $\pi_{o}(s, a)$ state Take action a Environment Observe state s Dataset $\mathcal{R}_{M,l}^{-1}(\pi_1^1) = \{\vec{x}^1, ..., \vec{x}^{10}, \vec{x}\}$ $\{i : \vec{x}^i \in \mathcal{R}_{M,l}^{-1}, (\pi_1^1)\} = \{1, 2, 3, 4, 5\}$ $\begin{array}{l} \pi_1^2 \\ \{\vec{x}^1, \vec{x}^4, \vec{x}^8, \vec{x}^9, \vec{x}\} \\ \{\vec{x}^1, \vec{x}^4, \vec{x}^8, \vec{x}^9, \vec{x}\} \\ \mathcal{M}_{M,l}^{-1}(\pi_l^2)\} = \{1, 4\} \\ \{i : \vec{x}^i \in \mathcal{R}_{M,l}^{-1}(\pi_l^2)\} = \{2, 3, 5\} \end{array}$ $\{i: \vec{x}^i \in \mathcal{R}_{M,l}^{-1}(\pi_1^2)\} = \{1, 4\}$ $\begin{array}{ll} \pi_1^3 & \pi_2^3 \\ \mathcal{R}_{M,l}^{-1}(\pi_1^3) = \{\vec{x}^1, \vec{x}^4, \vec{x}^9\} & \mathcal{R}_{M,l}^{-1}(\pi_2^3) = \{\vec{x}^8, \vec{x}\} \\ \{i: \vec{x}^i \in \mathcal{R}_{M,l}^{-1}(\pi_1^3)\} = \{1, 4\} & \{i: \vec{x}^i \in \mathcal{R}_{M,l}^{-1}(\pi_2^3)\} = \emptyset \end{array}$ Majority Voting / Averagin

Usage of hundreds of input features possible Typically large "training sample sizes" for the model to learn from

Which approximation h_{θ} can best prescribe a decision z (output) from known information x (input) such that costs are minimized?

Decisions (prescriptions) for single or multiple time instances

Chair of Logistics and Quantitative Methods | Prof. Richard Pibernik

model

data

CASE EXAMPLES

CASE EXAMPLES

CASE EXAMPLES

Case 3: Predictive Analytics for data-driven Container demand flow prediction and subsequent network rebalancing optimization

Large set of network flow and container routing data ...

... is used by the Predictive Analytics Engine to forecast container demand as input to optimize network rebalancing ...

Container log data

- Customer demand flows
- Network balancing flows (manual repositioning flows)

Order data

 Customer order specifications (type, size, lane information, order dates)

Freight cost data

- Freight rates for past balancing flows
- Freight rate index

New Machine Learning based forecasting approaches combined with subsequent network optimization model

Forecasting: Multi-step Extreme Gradient Boosting model for container demand

Optimization: Stochastic multicommodity

network flow model

$$\min \sum_{t \in T} \sum_{s \in S} \sum_{c \in C} \tilde{z}_{s,c,t} \cdot c_c^{hold} +$$

$$\sum_{T} \sum_{c \in C} \sum_{(o,d) \in L} \sum_{m \in M} r_{o,d,c,t,m} \cdot c_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} + c_{o,d,c,t,m}^{freight} + b_{o,d,c,t,m}^{freight} + c_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} + c_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} + c_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} + c_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} + c_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,c,t,m}^{freight} \cdot b_{o,d,c,t,m}^{freight} \cdot b_{o,d,c,c$$

 $\sum_{t \in T} \sum_{c \in C} \sum_{(o,d) \in I} \left(\mu_{o,d,c,t} + \sum_{m \in M} r_{o,d,c,t,m} \cdot b_{o,d,c,t,m}^{freight} \right) \cdot \left(c_{o,c}^{out} + c_{d,c}^{in} \right)$

... which outputs high quality prescriptions

Container rebalancing flows for the entire network (multiple locations, multiple commodities)

16

Prescriptive analytics promises two obvious benefits ...

Better prescriptions and higher decision quality

- Better utilization of resources
- Lower costs
- Less fire fighting
- ...

Automation

- Substantially lower
 planning effort
- Quick re-planning
- ...

... but also raises a number of questions

- Human-Machine-Interaction (the future role of planners)?
- Required capabilities and skillsets (tooling, data, talent)?
- Organizational setup?
- Technology transformation?

"Hands off the Wheel!"

- not only for automated guided vehicles, but also for supply chain planning

How Amazon Automated Work and Put Its People to Better Use

by Alex Kantrowitz

September 16, 2020

https://hbr.org/2020/09/how-amazon-automated-work-andput-its-people-to-better-use

UNIVERSITÄT WÜRZBURG LEVEL³ A spin-off dedicated to bringing data-driven operations and logistics management into practice

Portfolio:

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

Existenzgründungen aus der Wissenschaft

Europäischer Sozialfonds für Deutschland

Europäische Union

aufgrund eines Beschlusses des Deutschen Bundestages